Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Online ; 23(1): 38, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561821

RESUMO

BACKGROUND: After stroke, restoring safe, independent, and efficient walking is a top rehabilitation priority. However, in nearly 70% of stroke survivors asymmetrical walking patterns and reduced walking speed persist. This case series study aims to investigate the effectiveness of transcutaneous spinal cord stimulation (tSCS) in enhancing walking ability of persons with chronic stroke. METHODS: Eight participants with hemiparesis after a single, chronic stroke were enrolled. Each participant was assigned to either the Stim group (N = 4, gait training + tSCS) or Control group (N = 4, gait training alone). Each participant in the Stim group was matched to a participant in the Control group based on age, time since stroke, and self-selected gait speed. For the Stim group, tSCS was delivered during gait training via electrodes placed on the skin between the spinous processes of C5-C6, T11-T12, and L1-L2. Both groups received 24 sessions of gait training over 8 weeks with a physical therapist providing verbal cueing for improved gait symmetry. Gait speed (measured from 10 m walk test), endurance (measured from 6 min walk test), spatiotemporal gait symmetries (step length and swing time), as well as the neurophysiological outcomes (muscle synergy, resting motor thresholds via spinal motor evoked responses) were collected without tSCS at baseline, completion, and 3 month follow-up. RESULTS: All four Stim participants sustained spatiotemporal symmetry improvements at the 3 month follow-up (step length: 17.7%, swing time: 10.1%) compared to the Control group (step length: 1.1%, swing time 3.6%). Additionally, 3 of 4 Stim participants showed increased number of muscle synergies and/or lowered resting motor thresholds compared to the Control group. CONCLUSIONS: This study provides promising preliminary evidence that using tSCS as a therapeutic catalyst to gait training may increase the efficacy of gait rehabilitation in individuals with chronic stroke. Trial registration NCT03714282 (clinicaltrials.gov), registration date: 2018-10-18.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Resultado do Tratamento , Caminhada/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Marcha/fisiologia , Sobreviventes
2.
Biomedicines ; 11(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36831125

RESUMO

(1) Background: Restoring arm and hand function is a priority for individuals with cervical spinal cord injury (cSCI) for independence and quality of life. Transcutaneous spinal cord stimulation (tSCS) promotes the upper extremity (UE) motor function when applied at the cervical region. The aim of the study was to determine the effects of cervical tSCS, combined with an exoskeleton, on motor strength and functionality of UE in subjects with cSCI. (2) Methods: twenty-two subjects participated in the randomized mix of parallel-group and crossover clinical trial, consisting of an intervention group (n = 15; tSCS exoskeleton) and a control group (n = 14; exoskeleton). The assessment was carried out at baseline, after the last session, and two weeks after the last session. We assessed graded redefined assessment of strength, sensibility, and prehension (GRASSP), box and block test (BBT), spinal cord independence measure III (SCIM-III), maximal voluntary contraction (MVC), ASIA impairment scale (AIS), and WhoQol-Bref; (3) Results: GRASSP, BBT, SCIM III, cylindrical grip force and AIS motor score showed significant improvement in both groups (p ≤ 0.05), however, it was significantly higher in the intervention group than the control group for GRASSP strength, and GRASSP prehension ability (p ≤ 0.05); (4) Conclusion: our findings show potential advantages of the combination of cervical tSCS with an exoskeleton to optimize the outcome for UE.

3.
Top Spinal Cord Inj Rehabil ; 29(1): 16-32, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819932

RESUMO

Neuromodulation via spinal stimulation is a promising therapy that can augment the neuromuscular capacity for voluntary movements, standing, stepping, and posture in individuals with spinal cord injury (SCI). The spinal locomotor-related neuronal network known as a central pattern generator (CPG) can generate a stepping-like motor output in the absence of movement-related afferent signals from the limbs. Using epidural stimulation (EP) in conjunction with activity-based locomotor training (ABLT), the neural circuits can be neuromodulated to facilitate the recovery of locomotor functions in persons with SCI. Recently, transcutaneous spinal stimulation (scTS) has been developed as a noninvasive alternative to EP. Early studies of scTS at thoracolumbar, coccygeal, and cervical regions have demonstrated its effectiveness in producing voluntary leg movements, posture control, and independent standing and improving upper extremity function in adults with chronic SCI. In pediatric studies, the technology of spinal neuromodulation is not yet widespread. There are a limited number of publications reporting on the use of scTS in children and adolescents with either cerebral palsy, spina bifida, or SCI.


Assuntos
Traumatismos da Medula Espinal , Humanos , Adulto , Criança , Adolescente , Movimento , Postura
4.
J Clin Med ; 11(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35806954

RESUMO

It has been suggested that neuroplasticity-promoting neuromodulation can restore sensory-motor pathways after spinal cord injury (SCI), reactivating the dormant locomotor neuronal circuitry. We introduce a neuro-rehabilitative approach that leverages locomotor training with multi-segmental spinal cord transcutaneous electrical stimulation (scTS). We hypothesized that scTS neuromodulates spinal networks, complementing the neuroplastic effects of locomotor training, result in a functional progression toward recovery of locomotion. We conducted a case-study to test this approach on a 27-year-old male classified as AIS A with chronic SCI. The training regimen included task-driven non-weight-bearing training (1 month) followed by weight-bearing training (2 months). Training was paired with multi-level continuous and phase-dependent scTS targeting function-specific motor pools. Results suggest a convergence of cross-lesional networks, improving kinematics during voluntary non-weight-bearing locomotor-like stepping. After weight-bearing training, coordination during stepping improved, suggesting an important role of afferent feedback in further improvement of voluntary control and reorganization of the sensory-motor brain-spinal connectome.

5.
J Neurophysiol ; 127(4): 1075-1085, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35320019

RESUMO

The use of transcutaneous electrical spinal stimulation (TSS) to modulate sensorimotor networks after neurological insult has garnered much attention from both researchers and clinicians in recent years. Although many different stimulation paradigms have been reported, the interlimb effects of these neuromodulation techniques have been little studied. The effects of multisite TSS on interlimb sensorimotor function are of particular interest in the context of neurorehabilitation, as these networks have been shown to be important for functional recovery after neurological insult. The present study utilized a condition-test paradigm to investigate the effects of interenlargement TSS on spinal motor excitability in both cervical and lumbosacral motor pools. Additionally, comparison was made between the conditioning effects of lumbosacral and cervical TSS and peripheral stimulation of the fibular nerve and ulnar nerve, respectively. In 16/16 supine, relaxed participants, facilitation of spinally evoked motor responses (sEMRs) in arm muscles was seen in response to lumbosacral TSS or fibular nerve stimulation, whereas facilitation of sEMRs in leg muscles was seen in response to cervical TSS or ulnar nerve stimulation. The decreased latency between TSS- and peripheral nerve-evoked conditioning implicates interlimb networks in the observed facilitation of motor output. The results demonstrate the ability of multisite TSS to engage interlimb networks, resulting in the bidirectional influence of cervical and lumbosacral motor output. The engagement of interlimb networks via TSS of the cervical and lumbosacral enlargements represents a feasible method for engaging spinal sensorimotor networks in clinical populations with compromised motor function.NEW & NOTEWORTHY Bidirectional interlimb modulation of spinal motor excitability can be evoked by transcutaneous spinal stimulation over the cervical and lumbosacral enlargements. Multisite transcutaneous spinal stimulation engages spinal sensorimotor networks thought to be important in the recovery of function after spinal cord injury.


Assuntos
Traumatismos da Medula Espinal , Estimulação da Medula Espinal , Estimulação Elétrica Nervosa Transcutânea , Humanos , Músculo Esquelético/fisiologia , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodos , Estimulação Elétrica Nervosa Transcutânea/métodos
6.
J Clin Med ; 10(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768418

RESUMO

Transcutaneous (TSS) and epidural spinal stimulation (ESS) are electrophysiological techniques that have been used to investigate the interactions between exogenous electrical stimuli and spinal sensorimotor networks that integrate descending motor signals with afferent inputs from the periphery during motor tasks such as standing and stepping. Recently, pilot-phase clinical trials using ESS and TSS have demonstrated restoration of motor functions that were previously lost due to spinal cord injury (SCI). However, the spinal network interactions that occur in response to TSS or ESS pulses with spared descending connections across the site of SCI have yet to be characterized. Therefore, we examined the effects of delivering TSS or ESS pulses to the lumbosacral spinal cord in nine individuals with chronic SCI. During low-frequency stimulation, participants were instructed to relax or attempt maximum voluntary contraction to perform full leg flexion while supine. We observed similar lower-extremity neuromusculature activation during TSS and ESS when performed in the same participants while instructed to relax. Interestingly, when participants were instructed to attempt lower-extremity muscle contractions, both TSS- and ESS-evoked motor responses were significantly inhibited across all muscles. Participants with clinically complete SCI tested with ESS and participants with clinically incomplete SCI tested with TSS demonstrated greater ability to modulate evoked responses than participants with motor complete SCI tested with TSS, although this was not statistically significant due to a low number of subjects in each subgroup. These results suggest that descending commands combined with spinal stimulation may increase activity of inhibitory interneuronal circuitry within spinal sensorimotor networks in individuals with SCI, which may be relevant in the context of regaining functional motor outcomes.

7.
Brain Sci ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202413

RESUMO

Brain-computer interfaces (BCIs), based on motor imagery, are increasingly used in neurorehabilitation. However, some people cannot control BCI, predictors of this are the features of brain activity and personality traits. It is not known whether the success of BCI control is related to interhemispheric asymmetry. The study was conducted on 44 BCI-naive subjects and included one BCI session, EEG-analysis, 16PF Cattell Questionnaire, estimation of latent left-handedness, and of subjective complexity of real and imagery movements. The success of brain states recognition during imagination of left hand (LH) movement compared to the rest is higher in reserved, practical, skeptical, and not very sociable individuals. Extraversion, liveliness, and dominance are significant for the imagination of right hand (RH) movements in "pure" right-handers, and sensitivity in latent left-handers. Subjective complexity of real LH and of imagery RH movements correlates with the success of brain states recognition in the imagination of movement of LH compared to RH and depends on the level of handedness. Thus, the level of handedness is the factor influencing the success of BCI control. The data are supposed to be connected with hemispheric differences in motor control, lateralization of dopamine, and may be important for rehabilitation of patients after a stroke.

8.
J Neurotrauma ; 36(9): 1435-1450, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30362876

RESUMO

Neuromodulation of spinal networks can improve motor control after spinal cord injury (SCI). The objectives of this study were to (1) determine whether individuals with chronic paralysis can stand with the aid of non-invasive electrical spinal stimulation with their knees and hips extended without trainer assistance, and (2) investigate whether postural control can be further improved following repeated sessions of stand training. Using a double-blind, balanced, within-subject cross-over, and sham-controlled study design, 15 individuals with SCI of various severity received transcutaneous electrical spinal stimulation to regain self-assisted standing. The primary outcomes included qualitative comparison of need of external assistance for knee and hip extension provided by trainers during standing without and in the presence of stimulation in the same participants, as well as quantitative measures, such as the level of knee assistance and amount of time spent standing without trainer assistance. None of the participants could stand unassisted without stimulation or in the presence of sham stimulation. With stimulation all participants could maintain upright standing with minimum and some (n = 7) without external assistance applied to the knees or hips, using their hands for upper body balance as needed. Quality of balance control was practice-dependent, and improved with subsequent training. During self-initiated body-weight displacements in standing enabled by spinal stimulation, high levels of leg muscle activity emerged, and depended on the amount of muscle loading. Our findings indicate that the lumbosacral spinal networks can be modulated transcutaneously using electrical spinal stimulation to facilitate self-assisted standing after chronic motor and sensory complete paralysis.


Assuntos
Traumatismos da Medula Espinal/terapia , Estimulação da Medula Espinal/métodos , Posição Ortostática , Adulto , Método Duplo-Cego , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia
9.
J Neurotrauma ; 36(9): 1451-1460, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30430902

RESUMO

Epidural electrical stimulation (EES) of the spinal cord has been shown to restore function after spinal cord injury (SCI). Characterization of EES-evoked motor responses has provided a basic understanding of spinal sensorimotor network activity related to EES-enabled motor activity of the lower extremities. However, the use of EES-evoked motor responses to guide EES system implantation over the spinal cord and their relation to post-operative EES-enabled function in humans with chronic paralysis attributed to SCI has yet to be described. Herein, we describe the surgical and intraoperative electrophysiological approach used, followed by initial EES-enabled results observed in 2 human subjects with motor complete paralysis who were enrolled in a clinical trial investigating the use of EES to enable motor functions after SCI. The 16-contact electrode array was initially positioned under fluoroscopic guidance. Then, EES-evoked motor responses were recorded from select leg muscles and displayed in real time to determine electrode array proximity to spinal cord regions associated with motor activity of the lower extremities. Acceptable array positioning was determined based on achievement of selective proximal or distal leg muscle activity, as well as bilateral muscle activation. Motor response latencies were not significantly different between intraoperative recordings and post-operative recordings, indicating that array positioning remained stable. Additionally, EES enabled intentional control of step-like activity in both subjects within the first 5 days of testing. These results suggest that the use of EES-evoked motor responses may guide intraoperative positioning of epidural electrodes to target spinal cord circuitry to enable motor functions after SCI.


Assuntos
Eletrodos Implantados , Monitorização Neurofisiológica Intraoperatória/métodos , Procedimentos Neurocirúrgicos/métodos , Traumatismos da Medula Espinal/terapia , Estimulação da Medula Espinal/métodos , Adulto , Eletromiografia/métodos , Espaço Epidural , Potencial Evocado Motor/fisiologia , Humanos , Locomoção/fisiologia , Região Lombossacral , Masculino , Paralisia/etiologia , Paralisia/fisiopatologia , Paralisia/cirurgia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia
10.
Front Physiol ; 9: 1746, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574093

RESUMO

As part of a project aimed to develop a novel, non-invasive techniques for comprehensive assessment of supraspinal-spinal connectivity in humans, the present study sought to explore the convergence of descending vestibulospinal and corticospinal pathways onto lumbosacral motor pools. Transcutaneous electrical spinal stimulation-evoked motor potentials were recorded from knee and ankle flexors and extensors in resting neurologically intact participants. Descending influences on lumbosacral motor neurons were studied using galvanic vestibular (GVS) or transcranial magnetic stimulation (TMS) to elicit descending vestibulospinal or corticospinal volleys, respectively. Facilitatory conditioning effects of descending corticospinal volleys were manifested by a significant increase of spinally evoked motor potentials in recorded knee and ankle muscles bilaterally, and were observed at the 10-30 ms conditioning-test intervals (CTIs); whereas, facilitatory conditioning effects of vestibulospinal volleys manifested at longer latencies (CTIs of 90 and 110 ms), and lasted up to 250 ms. TMS mediated volleys revealed the conditioning effects at both short and long latencies, suggestive of both direct and indirect influence. In contrast, vestibulospinally mediated conditioning effects occurred at longer latencies, consistent with this pathway's known anatomical and functional interfaces with other descending systems including the reticulospinal pathway and, suggestively, propriospinal interneurons. Our work demonstrates the utility and sensitivity of transcutaneous spinal stimulation in human neurophysiological studies as a technique for quantitative characterization of excitatory conditioning effects in multiple lumbosacral motor pools, obtained through descending pathways. This characterization becomes critical in understanding the neuroplasticity in the central nervous system during motor learning and neurological recovery.

11.
Nat Med ; 24(12): 1942, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30353100

RESUMO

In the version of this article originally published, Dimitry G. Sayenko's affiliations were not correct. The following affiliation for this author was missing: Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA. This affiliation has been added for the author, and the rest of the affiliations have been renumbered accordingly. The error has been corrected in the HTML and PDF versions of this article.

12.
Nat Med ; 24(11): 1677-1682, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30250140

RESUMO

Spinal sensorimotor networks that are functionally disconnected from the brain because of spinal cord injury (SCI) can be facilitated via epidural electrical stimulation (EES) to restore robust, coordinated motor activity in humans with paralysis1-3. Previously, we reported a clinical case of complete sensorimotor paralysis of the lower extremities in which EES restored the ability to stand and the ability to control step-like activity while side-lying or suspended vertically in a body-weight support system (BWS)4. Since then, dynamic task-specific training in the presence of EES, termed multimodal rehabilitation (MMR), was performed for 43 weeks and resulted in bilateral stepping on a treadmill, independent from trainer assistance or BWS. Additionally, MMR enabled independent stepping over ground while using a front-wheeled walker with trainer assistance at the hips to maintain balance. Furthermore, MMR engaged sensorimotor networks to achieve dynamic performance of standing and stepping. To our knowledge, this is the first report of independent stepping enabled by task-specific training in the presence of EES by a human with complete loss of lower extremity sensorimotor function due to SCI.


Assuntos
Rede Nervosa/fisiopatologia , Paraplegia/reabilitação , Traumatismos da Medula Espinal/reabilitação , Estimulação Elétrica Nervosa Transcutânea , Adulto , Estimulação Elétrica , Eletromiografia , Humanos , Masculino , Atividade Motora/fisiologia , Músculo Esquelético/fisiopatologia , Paralisia/fisiopatologia , Paralisia/reabilitação , Paraplegia/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia
13.
J Neurotrauma ; 35(21): 2540-2553, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29786465

RESUMO

Electrical neuromodulation of spinal networks improves the control of movement of the paralyzed limbs after spinal cord injury (SCI). However, the potential of noninvasive spinal stimulation to facilitate postural trunk control during sitting in humans with SCI has not been investigated. We hypothesized that transcutaneous electrical stimulation of the lumbosacral enlargement can improve trunk posture. Eight participants with non-progressive SCI at C3-T9, American Spinal Injury Association Impairment Scale (AIS) A or C, performed different motor tasks during sitting. Electromyography of the trunk muscles, three-dimensional kinematics, and force plate data were acquired. Spinal stimulation improved trunk control during sitting in all tested individuals. Stimulation resulted in elevated activity of the erector spinae, rectus abdominis, and external obliques, contributing to improved trunk control, more natural anterior pelvic tilt and lordotic curve, and greater multi-directional seated stability. During spinal stimulation, the center of pressure (COP) displacements decreased to 1.36 ± 0.98 mm compared with 4.74 ± 5.41 mm without stimulation (p = 0.0156) in quiet sitting, and the limits of stable displacement increased by 46.92 ± 35.66% (p = 0.0156), 36.92 ± 30.48% (p = 0.0156), 54.67 ± 77.99% (p = 0.0234), and 22.70 ± 26.09% (p = 0.0391) in the forward, backward, right, and left directions, respectively. During self-initiated perturbations, the correlation between anteroposterior arm velocity and the COP displacement decreased from r = 0.5821 (p = 0.0007) without to r = 0.5115 (p = 0.0039) with stimulation, indicating improved trunk stability. These data demonstrate that the spinal networks can be modulated transcutaneously with tonic electrical spinal stimulation to physiological states sufficient to generate a more stable, erect sitting posture after chronic paralysis.


Assuntos
Terapia por Estimulação Elétrica/métodos , Equilíbrio Postural , Postura Sentada , Traumatismos da Medula Espinal/reabilitação , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paralisia/etiologia , Paralisia/reabilitação , Postura/fisiologia , Traumatismos da Medula Espinal/complicações , Tronco , Adulto Jovem
14.
Mayo Clin Proc ; 92(4): 544-554, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28385196

RESUMO

We report a case of chronic traumatic paraplegia in which epidural electrical stimulation (EES) of the lumbosacral spinal cord enabled (1) volitional control of task-specific muscle activity, (2) volitional control of rhythmic muscle activity to produce steplike movements while side-lying, (3) independent standing, and (4) while in a vertical position with body weight partially supported, voluntary control of steplike movements and rhythmic muscle activity. This is the first time that the application of EES enabled all of these tasks in the same patient within the first 2 weeks (8 stimulation sessions total) of EES therapy.


Assuntos
Terapia por Estimulação Elétrica/métodos , Músculo Esquelético/fisiopatologia , Paraplegia , Traumatismos da Medula Espinal , Medula Espinal/fisiopatologia , Adulto , Eletromiografia/métodos , Humanos , Masculino , Paraplegia/diagnóstico , Paraplegia/etiologia , Paraplegia/fisiopatologia , Postura/fisiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/terapia , Análise e Desempenho de Tarefas , Resultado do Tratamento , Caminhada/fisiologia
15.
Exp Neurol ; 285(Pt B): 182-189, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27381425

RESUMO

The inability to control timely bladder emptying is one of the most serious challenges among the many functional deficits that occur after a spinal cord injury. We previously demonstrated that electrodes placed epidurally on the dorsum of the spinal cord can be used in animals and humans to recover postural and locomotor function after complete paralysis and can be used to enable voiding in spinal rats. In the present study, we examined the neuromodulation of lower urinary tract function associated with acute epidural spinal cord stimulation, locomotion, and peripheral nerve stimulation in adult rats. Herein we demonstrate that electrically evoked potentials in the hindlimb muscles and external urethral sphincter are modulated uniquely when the rat is stepping bipedally and not voiding, immediately pre-voiding, or when voiding. We also show that spinal cord stimulation can effectively neuromodulate the lower urinary tract via frequency-dependent stimulation patterns and that neural peripheral nerve stimulation can activate the external urethral sphincter both directly and via relays in the spinal cord. The data demonstrate that the sensorimotor networks controlling bladder and locomotion are highly integrated neurophysiologically and behaviorally and demonstrate how these two functions are modulated by sensory input from the tibial and pudental nerves. A more detailed understanding of the high level of interaction between these networks could lead to the integration of multiple neurophysiological strategies to improve bladder function. These data suggest that the development of strategies to improve bladder function should simultaneously engage these highly integrated networks in an activity-dependent manner.


Assuntos
Terapia por Estimulação Elétrica , Vias Neurais/fisiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/terapia , Sistema Urinário/fisiopatologia , Micção , Animais , Modelos Animais de Doenças , Eletrodos Implantados , Eletromiografia , Potencial Evocado Motor/fisiologia , Terapia por Exercício , Feminino , Membro Posterior/inervação , Locomoção/fisiologia , Músculo Esquelético/fisiopatologia , Nervos Periféricos/fisiologia , Ratos , Ratos Sprague-Dawley , Micção/fisiologia
16.
Neurosci Lett ; 609: 229-34, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26453766

RESUMO

It was demonstrated previously that transcutaneous electrical stimulation of multiple sites over the spinal cord is more effective in inducing robust locomotor behavior as compared to the stimulation of single sites alone in both animal and human models. To explore the effects and mechanisms of interactions during multi-site spinal cord stimulation we delivered transcutaneous electrical stimulation to the single or dual locations over the spinal cord corresponding to approximately L2 and S1 segments. Spinally evoked motor potentials in the leg muscles were investigated using single and paired pulses of 1ms duration with conditioning-test intervals (CTIs) of 5 and 50ms. We observed considerable post-stimulation modulatory effects which depended on CTIs, as well as on whether the paired stimuli were delivered at a single or dual locations, the rostro-caudal relation between the conditioning and test stimuli, and on the muscle studied. At CTI-5, the paired stimulation delivered at single locations (L2 or S1) provided strong inhibitory effects, evidenced by the attenuation of the compound responses as compared with responses from either single site. In contrast, during L2-S1 paradigm, the compound responses were potentiated. At CTI-50, the magnitude of inhibition did not differ among paired stimulation paradigms. Our results suggest that electrical stimuli delivered to dual sites over the lumbosacral enlargement in rostral-to-caudal order, may recruit different populations of motor neurons initially through projecting sensory and intraspinal connections and then directly, resulting in potentiation of the compound spinally evoked motor potentials. The interactive and synergistic effects indicate multi-segmental convergence of descending and ascending influences on the neuronal circuitries during electrical spinal cord stimulation.


Assuntos
Medula Espinal/fisiologia , Estimulação Elétrica Nervosa Transcutânea , Adulto , Potencial Evocado Motor , Feminino , Humanos , Região Lombossacral , Masculino , Neurônios Motores/fisiologia
17.
J Neurotrauma ; 32(24): 1968-80, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26077679

RESUMO

The present prognosis for the recovery of voluntary control of movement in patients diagnosed as motor complete is generally poor. Herein we introduce a novel and noninvasive stimulation strategy of painless transcutaneous electrical enabling motor control and a pharmacological enabling motor control strategy to neuromodulate the physiological state of the spinal cord. This neuromodulation enabled the spinal locomotor networks of individuals with motor complete paralysis for 2-6 years American Spinal Cord Injury Association Impairment Scale (AIS) to be re-engaged and trained. We showed that locomotor-like stepping could be induced without voluntary effort within a single test session using electrical stimulation and training. We also observed significant facilitation of voluntary influence on the stepping movements in the presence of stimulation over a 4-week period in each subject. Using these strategies we transformed brain-spinal neuronal networks from a dormant to a functional state sufficiently to enable recovery of voluntary movement in five out of five subjects. Pharmacological intervention combined with stimulation and training resulted in further improvement in voluntary motor control of stepping-like movements in all subjects. We also observed on-command selective activation of the gastrocnemius and soleus muscles when attempting to plantarflex. At the end of 18 weeks of weekly interventions the mean changes in the amplitude of voluntarily controlled movement without stimulation was as high as occurred when combined with electrical stimulation. Additionally, spinally evoked motor potentials were readily modulated in the presence of voluntary effort, providing electrophysiological evidence of the re-establishment of functional connectivity among neural networks between the brain and the spinal cord.


Assuntos
Terapia por Estimulação Elétrica/métodos , Potencial Evocado Motor/fisiologia , Paralisia/terapia , Desempenho Psicomotor/fisiologia , Tratos Piramidais/fisiologia , Traumatismos da Medula Espinal/terapia , Adulto , Vértebras Cervicais , Humanos , Masculino , Pessoa de Meia-Idade , Paralisia/diagnóstico , Paralisia/etiologia , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico , Vértebras Torácicas , Adulto Jovem
18.
J Appl Physiol (1985) ; 118(11): 1364-74, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25814642

RESUMO

Transcutaneous and epidural electrical spinal cord stimulation techniques are becoming more valuable as electrophysiological and clinical tools. Recently, we observed selective activation of proximal and distal motor pools during epidural spinal stimulation. In the present study, we hypothesized that the characteristics of recruitment curves obtained from leg muscles will reflect a relative preferential activation of proximal and distal motor pools based on their arrangement along the lumbosacral enlargement. The purpose was to describe the electrophysiological responses to transcutaneous stimulation in leg muscles innervated by motoneurons from different segmental levels. Stimulation delivered along the rostrocaudal axis of the lumbosacral enlargement in the supine position resulted in a selective topographical recruitment of proximal and distal leg muscles, as described by threshold intensity, slope of the recruitment curves, and plateau point intensity and magnitude. Relatively selective recruitment of proximal and distal motor pools can be titrated by optimizing the site and intensity level of stimulation to excite a given combination of motor pools. The slope of the recruitment of particular muscles allows characterization of the properties of afferents projecting to specific motoneuron pools, as well as to the type and size of the motoneurons. The location and intensity of transcutaneous spinal electrical stimulation are critical to target particular neural structures across different motor pools in investigation of specific neuromodulatory effects. Finally, the asymmetry in bilateral evoked potentials is inevitable and can be attributed to both anatomical and functional peculiarities of individual muscles or muscle groups.


Assuntos
Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Recrutamento Neurofisiológico , Medula Espinal/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Adulto , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Extremidade Inferior , Vértebras Lombares , Masculino , Contração Muscular , Sacro , Decúbito Dorsal
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1124-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736463

RESUMO

We asked whether coordinated voluntary movement of the lower limbs could be regained in an individual having been completely paralyzed (>4 yr) and completely absent of vision (>15 yr) using a novel strategy - transcutaneous spinal cord stimulation at selected sites over the spinal vertebrae with just one week of training. We also asked whether this stimulation strategy could facilitate stepping assisted by an exoskeleton (EKSO, EKSO Bionics) that is designed so that the subject can voluntarily complement the work being performed by the exoskeleton. We found that spinal cord stimulation enhanced the level of effort that the subject could generate while stepping in the exoskeleton. In addition, stimulation improved the coordination patterns of the lower limb muscles resulting in a more continuous, smooth stepping motion in the exoskeleton. These stepping sessions in the presence of stimulation were accompanied by greater cardiac responses and sweating than could be attained without the stimulation. Based on the data from this case study it appears that there is considerable potential for positive synergistic effects after complete paralysis by combining the overground stepping in an exoskeleton, a novel transcutaneous spinal cord stimulation paradigm, and daily training.


Assuntos
Estimulação da Medula Espinal , Humanos , Ferro , Paralisia , Medula Espinal , Traumatismos da Medula Espinal
20.
PLoS One ; 9(9): e108184, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25264607

RESUMO

The inability to control timely bladder emptying is one of the most serious challenges among the several functional deficits that occur after a complete spinal cord injury. Having demonstrated that electrodes placed epidurally on the dorsum of the spinal cord can be used in animals and humans to recover postural and locomotor function after complete paralysis, we hypothesized that a similar approach could be used to recover bladder function after paralysis. Also knowing that posture and locomotion can be initiated immediately with a specific frequency-dependent stimulation pattern and that with repeated stimulation-training sessions these functions can improve even further, we reasoned that the same two strategies could be used to regain bladder function. Recent evidence suggests that rats with severe paralysis can be rehabilitated with a multisystem neuroprosthetic training regime that counteracts the development of neurogenic bladder dysfunction. No data regarding the acute effects of locomotion on bladder function, however, were reported. In this study we show that enabling of locomotor-related spinal neuronal circuits by epidural stimulation also influences neural networks controlling bladder function and can play a vital role in recovering bladder function after complete paralysis. We have identified specific spinal cord stimulation parameters that initiate bladder emptying within seconds of the initiation of epidural stimulation. The clinical implications of these results are substantial in that this strategy could have a major impact in improving the quality of life and longevity of patients while simultaneously dramatically reducing ongoing health maintenance after a spinal cord injury.


Assuntos
Estimulação Elétrica , Condicionamento Físico Animal , Medula Espinal/fisiologia , Micção , Animais , Eletrodos , Eletromiografia , Feminino , Locomoção , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...